RMSE(Root Mean Squared Error) : 예측값과 실제값의 차이의 제곱의 평균

RMSE가 작을 수록 정확한 시스템. 따라서 RMSE가 0일떄 최소값이다. 

RMSE의 최대값은 평점(yi) 의 값과 동일하다. 예를 들어 평점이 5까지 있는 경우 예상평점이 0이면 RMSE값은 5가 나오고므로 N의 범위와 상관없이 5이다. 만약 평점이 100까지 있다면  RMSE의 최대값은 100이 되겠다.

따라서 평점이 다른 두개의 추천 시스템을 비교한다면 RMSE 값을 직접 비교하면 안되고 뭔가 Normalize 하는 절차가 필요할 것으로 예상된다. 

NETFLIX PRIZE의 경우에는 같은 데이터에 대해서 다양한 추천 시스템을 비교하므로 RMSE를 척도로 사용할 수 있었겠지만, 만약 평점의 Range가 다른 다양한 데이터에서의 다른 추천시스템의 성능을 비교할때 RMSE 값만으로 단순하게 비교하면 오류가 있을 수 있다. 

'COMPUTER > RECOMMENDATION' 카테고리의 다른 글

stratified sampling (층별 샘플링)  (0) 2022.09.09
cold start problem이란  (0) 2022.06.22

+ Recent posts