TensorFlow Mnist Beginner Code
import tensorflow as tf
//Load data
x = tf.placeholder(tf.float32,[None,784]) //data가 들어갈 부분
W = tf.Variable(tf.zeros([784,10])) //학습될 weight의 자리 - 0으로 초기화
b = tf.Variable(tf.zeros([10])) //학습될 bias b의 자리 - 0으로 초기화
y = tf.nn.softmax(tf.matmul(x,W)+b) //
//Train the model
y_=tf.placeholder(tf.float32,[None,10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
//실제 train하는 부분 //데이터를 100개씩 1000번 주면서 train_step을 밟음
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
//Evaluate the model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})